
ISRAEL JOURNAL OF MATHEMATICS 156 (2006), 187-204 

A BERNSTEIN-CHERNOFF DEVIATION INEQUALITY, 
AND GEOMETRIC PROPERTIES OF 

RANDOM FAMILIES OF OPERATORS 

BY 

SHIRI A R T S T E I N - A V I D A N *  

Department of Mathematics, Princeton University 
Fine Hall, Washington Road, Princeton NJ 085~-i000, USA 

e-mail: artstein~princeton.edu 

ABSTRACT 

In th is  pape r  we first descr ibe a new devia t ion  inequal i ty  for s u m s  of 

i ndependen t  r a n d o m  variables which  uses  t he  precise c o n s t a n t s  appear ing  

in the  tai ls  of thei r  d i s t r ibu t ions ,  and  can  reflect in full thei r  concen t ra t ion  

propert ies .  In the  proof  we make  use  of Chernof f ' s  bounds .  We t h e n  apply  

th is  inequal i ty  to prove a global d i ame te r  reduc t ion  t h e o r e m  for abs t r ac t  

families of l inear opera tors  endowed wi th  a probabi l i ty  m e a s u r e  sa t i s fy ing 

some  condit ion.  Next  we give a local d i amete r  reduc t ion  t heo rem for 

abs t r ac t  families of l inear opera tors .  We discuss  some  examples  and  give 

one more  global  resul t  in t he  reverse direction,  and  extens ions .  

Introduction 

The first theorem in this note is a new Bernstein-type deviation inequality which 

we prove using Chernoff's bounds. This theorem is different from the classical 

Bernstein inequality in the following way: whereas the condition in the standard 

Bernstein inequality is on the global behavior of the random variables in ques- 

tion, for example a condition on the expectation of e cx2, in Theorem 1 below 

the condition uses only the constants appearing in the tail of the distribution, 

and so can reflect concentration. Sometimes one can prove very strong estimates 

on the tails. In the theorem below these estimates can be then used and are 

amplified when one averages many i.i.d, copies of the variable. This theorem in 
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a special case was brought forward and used in the paper [AFM] for a specific 

example. Its proof is straightforward using only Chernoff's bounds, and we find 

this approach insightful and new. 

We first apply the deviation inequality for some geometric question. We 

present several results regarding the behavior of the diameter of a convex body 

under some random operations. The first is a global result, namely regarding 

the Minkowski sums of copies of a convex body acted upon by abstract families 

of linear operators endowed with a probability measure. The classical global 

diameter reduction is the well known special case where the family of operators 

is O(n), the family of orthogonal rotations. This was first observed in [BLM]; 

see also [MiS] for more details. In Section 5 we revisit this case as an example. 

The second result we discuss is of a local nature, and is an extension of 

the now well known diameter reduction phenomenon for random orthogonal 

projections. This phenomenon was first observed by Milman in his proof for the 

quotient of a subspace theorem, [Mi2] (and analyzed as a separate proposition 

in [Mi3], where more references can be found). It can be considered today as 

a consequence of the classical Dvoretzky-type theorem as proved in [Mill. The 

classical theorem concerns the case where the random operation is intersection 

with a random subspace or projection onto a random subspace. However, in this 

paper we consider a more general setting. Instead of working with projections, 

we deal with an abstract family of linear operators endowed with a probability 

measure and find a condition on this measure (which is in fact a condition on 

the probabilistic behavior of the operators on individual elements x E R n) which 

promises that  a diameter reduction theorem holds. The proof of the theorem 

uses Talagrand's Majorizing Measures Theorem; see [Tal]. 

In Section 4 we describe a global result in the reverse direction, describing in a 

particular case when the resulting body contains a euclidean ball. In the classical 

setting this kind of containment is the only known reason for stabilization of 

the diameter. 

We then discuss some examples. We show how the abstract propositions 

indeed imply Milman's diameter reduction theorem for usual orthogonal pro- 

jections and global Dvoretzky's Theorem for unitary transformations (and the 

diameter reduction which occurs until stabilization). We describe other families 

of operators for which there is a similar diameter reduction. One of our main 

goals is to crystalize which properties of the operators are important for diam- 

eter reduction results to hold. Finally, we give two more variants of the local 

result. 
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We remark that the results described in this paper have many similar variants 

that can be proven in exactly the same way. The choice of conditions in each one 

depends very much on the applications in mind. Thus as much as we tried to give 

general and abstract constructions, stating each proposition in full generality 

would be notationally very inconvenient. We tried to indicate in remarks which 

main variants are possible for each statement. 

Recently, I learned that results in the spirit of Proposition 3 below are being 

studied by the team of A. Litvak, A. Pajor and N. Tomczak-Jaegermann; see 

[LPT]. 

NOTATION. We use [. [ to denote the euclidan norm in R n, and denote by 

Dn the euclidean unit ball, Dn = {x : [x[ _~ 1}. For a centrally symmet- 

ric convex body K C ]R n we denote by d = d(K) its diameter, so K C 

d(K)Dn. We let M* = M*(K)  denote half its mean width, that is M*(K)  = 

fsn_ 1 sup~eK (x, y)da (x) where S n-  1 is the euclidean unit sphere and a denotes 

the normalized Lebesgue measure on this sphere. Thus M* is the average of 

the dual norm of K, which we denote by [[x[[* = supyEg(X , y). 

ACKNOWLEDGEMENT: I would like to thank Prof. Vitali Milman for his sup- 

port and encouragement, and mainly for his mathematical help and advice. 

1. A devia t ion inequal i ty  

We first describe our main tool, which is a Bernstein-type deviation theorem. 

Its proof follows from Chernoff's bounds, and we provide it below. We wish to 

point out the main difference between this theorem and the classical Bernstein 

deviation inequality for, say ~2, random variables. The classical theorem, to 

which we refer the reader, say, [BLM], gives an upper bound for the probability 

in (1) below, in the following form: If A is the ~2-norm of the random variable 

X, and Xi are i.i.d, copies of X, then 

N 

i=1 

The r of the variable is affected by the constant in the tail estimate, 

but not only, and for example the expectation or variance may take a part 

and influence this constant A. The purpose of the deviation inequality in our 

Theorem 1 is to use the tail estimate itself (and not just the good % behavior 

following from it). This type of proposition was first used, for a special example, 

in [AFM I. 
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THEOREM 1: Assume X is a random variable satisfying 

~[X  > t] < e -KtP 

for some constant K > 0, some p > 1, and any t > K0. Let X1,. .  �9 XN be i.i.d. 

copies of X.  Then for any s > max{C(K,p) ,Ko},  

N 
(1) ]P[~EXi>38] <_Co e-N(gsp-ln2) , 

i=1 
where Co is a universal constant for p bounded away from 1, and where C(K, p) 

= (1 + l n2 ) /K  1/p. 

Remark 1: As will be evident from the proof, it is not necessary that  the 

variables be identically distributed, and it is sufficient that they are independent 

and that  each satisfies the tail estimate. 

Remark 2: The term in 2 appearing in the estimate is avoidable, by using the 

exact form of Chernoff's inequality in the proof, namely using that  for i.i.d. 

p-Bernoulli variables Zi, and for/3 < p, 

N 
]~[i~_1_ Zi ~- ~XJ ~ e-N[C~ln(~/P)+(1-~)ln((1-13)/(1-P))]. 

For reference on this estimate and on the Chernoff bound used in the proof, 

see for example the survey on geometric applications of Chernoff-type estimates 

[AFM]. More precisely, if one substitutes the constant 3 by C1, then instead of 

In 2 one can put a constant c2 such that  c2 --* 0 when C1 --* ec. 

Remark 3: In the case p = 1 one encounters a problem with the convergence 

of the probability. However, if one assumes an upper bound d on the random 

variable X,  then the same proof as below will give an upper estimate on the 

probability in (1) of the form ,~, Co log(d/s)e -NKs/log(d/s), which is sufficient in 

some cases. 

P roo f  of  Theorem 1: We will use the standard Chernoff bound. For j = 

log s + 1, log s + 2 , . . .  we define 

Aj = {2 j -1  < X _< 2J}, 

so that  P[X~ E A3] <_ e -K2"(j-I~ (where we have used the assumption s > K0). 

We set mj = N s 2 - J / ( j  - l o g s )  2. We measure the probability of the following 
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event: out of the N variables Xi, for every j ,  no more than mj of them are in 

Aj. This event is included in the event that  

- - E X i < s  1 +  < 3 s .  
N i=1 j : l  

We will estimate the probability of the complementary event. It is less than 

the sum over j over the individual probabilities 

Pj = ~[more than mj of the Xis are in Aj]. 

As long as 

(2) s2-J/(j  - logs) 2 > e -K2p(j-1) 

(which will give us a condition on s, namely a lower bound on s in terms of K 

and p), this probability is small, and by Chernoff it is smaller than 

e-N[K2P(J-1) s2 - j / ( j - l o g  s) 2-In 2] = e-N[Ks2(P-I)J-x/(j-log s) 2-In 2] 

(Here, by using the exact form of Chernoff's estimate we may substitute - In 2 

by the term/3 ln/3+ (1- /3)  ln(1 - /3)  for, say,/3 = s2-J, and this will improve the 

estimate. More precisely, if we sum to begin with for j = log(Cx s) + 1, log(C1 s) + 

2 , . . .  we will have above tha t /3  _< 1/(2C1) and so the additional term in the 

exponent is also small, and tends to 0 when C1 increases.) 

The sum of these probabilities converges (we are using the fact p > 1), and 

is comparable to the first element in the series, which is e -u[spK/2-1n 2] (so, in 

fact, Co in the theorem depends on p but  can be taken universal, and even not 

large at all, when p is bounded away from 1). 

We now have to check condition (2). The left hand side is 2-i / i  2 and the right 

hand side is e -K2p(~-~) ~.  Taking the natural logarithm of both sides we see that  

the condition is ( i+2  in i)/2 p(i-1) < Ks  p. Clearly the left hand side is largest for 

i = 1, 2, so we need only ensure that  s > (2 + 2 In 2)/2K 1/p = (1 + in 2)/K 1/p. 
Thus we have shown that  the condition in Chernoff's bound is satisfied and the 

proof of Theorem 1 is complete. 1 

2. A g loba l  proposition 

We now state the application of this theorem, which is a global proposition 

regarding the decrease of diameter of a convex body, which generalizes the well 

known diameter reduction for averages of random orthogonal rotations of a 

convex body. 
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PROPOSITION 2: There exist universM constants c, C such that: Let {A} be 

some family of  operators A: R ~ -* R ~ with some probability measure ?. Assume 

that for some body K C R n and some a > 0 the following holds: for every 

x 6 ]Rn and for any s > So, 

(3) ~'[A: [IAxlIK > slxl] ~ e - ' ~ n .  

Then, i f T  < 2(1/aso) 2, we have with probability greater than 1 - e -cn that for 

any x 6 Rn 

T 

(4) ~ ~_~ IIA~xlIK ~ C Ixl, 
i=1  

and i f  T >_ 2(1/aso) 2, we have with probability greater than 1 - e -ca that for 

any x 6 R n 

T 
1 

(5) ~ ~ I]A~xIIK ~ Cs0[x[, 
i = l  

where Ai are chosen independently according to the distribution ?. 

Restating the proposition in geometric form, using duality, gives 

COROLLARY 1: There exist universM constants c, C such that: Let {A} be some 

family of  operators A: Rn ~ Rn with some probability measure ?.  Assume that 

for some body K C R n and some a > 0 the following holds: for every x 6 ]~n 

and for any s > so, 

(6) P[A: [[A*xll~ > slxl] ~ e - ~ n .  

Then, i f  T < 2(1/aSo) 2, we have with probability greater than 1 - e -ca that 

(7) AIK + A2K + . . . +  ATK C 1 Dn, 
T C a~/T  

and i f  T >_ 2(1/aso) 2, we have with probability greater than 1 - e -ca that 

A1K + A2K + . . .  + ATK 
(8) T C CsoDn, 

where Ai are chosen independently according to the distribution P. 
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Remark: We are describing the case p = 2 because it is the most useful. 

However, for any p > 1 we have a similar result, namely if instead of (6) we 

have an estimate of the form 

IIA*xll;r > slxl] e 

then we get a separation into two cases T < 2(1/~So) p and T > 2(1/(~So) p. In 

the first case, instead of (7) we get that  the average is included in C~--~/~Dn, 
and in the second case we get exactly (8). The proof is identical. As for p = 1, 

this is different, since Theorem 1 is different, and one gets an upper estimate on 

the diameter of the form ~ ~T log d if this quantity is greater than So. 

The meaning of the separation of the two cases inside the proposition seems 

to be that  there is a diameter reduction of order v ~  when taking an average 

of T copies of a convex body K operated upon by random operators Ai, until 

the diameter reaches some critical value on which it stabilizes. In the case of 

orthogonal rotations we know the reason for stabilization, namely the body 

becomes a euclidean ball. Of course, the proposition above gives only an upper 

bound, and by no means implies stabilization. To get any result in the reverse 

direction (namely, the inclusion of a ball of some radius after a given number of 

steps, and stabilization) we would need a reverse condition as well, promising 

that  points do not shrink very much under the random operation. This is 

addressed in Proposition 5. 

Proof of Proposition 2: We begin with the case of T < 2(1/c~s0) 2, and we 

should show that  for any x E S n-1 

T 

(9) ~ IIAixll <_ C - - ,  
c~ 

i=1 

under the assumption that  for some constant c~ and for any s > so 

P[A: IIAxll > slxl] 

Theorem 1 with p = 2 tells us that  then for s > max{s0, (1 + In 2)/(v~C~)} , we 

have 
T 

i=1 

We want this true for 3s = ~ 1 for every x in a 1/2-net on the sphere. Such a 

net has cardinality less than 5". Then successive approximation will guarantee 
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that inequality (9) be true for all x 6 S ~-1. The probability that  we get for 

this is greater than 1 - 5he -T(nc2/(36T)-ln 2 ) ,  which for large C is high, at least 

in the case where T <_ C'n .  If T is much larger than n the term In 2 interferes, 

and so we have to use the stronger form of Theorem 1 avoiding this term, which 

we indicated in the remark following Theorem 1 and also in the proof of the 

theorem. 

In the second case where T _> 2(1/~s0) 2 we can no longer take s -- C 1 

but only s = so. The probability is greater than 1 - 5ne -T(c~2s~ 2), and from 

the assumption on T this probability is exponentially close to 1. So, we get 

inequality (5). We remark that  although we wrote a universal constant C, the 

proof shows that  this constant is not large at all and can be chosen to be, say, 

5 (and in some cases close to 1). 1 

3. A local  p r o p o s i t i o n  

In this section we describe an analogue of Milman's local diameter reduction 

theorem, namely the theorem for orthogonal projections. The proof of Dvoret- 

zky's Theorem in [Mil] implies that a random projection of a convex body K in 

]~ of diameter d -- d(K) into a subspace of dimension k* = c(M*/d) 2 is an ap- 
proximate euclidean ball of radius M* = M* (K). The fact that this k* is indeed 

the correct formula for the dimension in which a projection is an approximate 

euclidean ball, and not just a lower estimate, was pointed out in [MiS]. 

It was then observed by Milman that for any dimension k > k*, when one 

projects the body/( into a k-dimensional subspace, its diameter decreases by 

a factor around X/-ff/n. For a detailed explanation of this fact and more of the 

history, see [Mi4], Section 2.3.1. Thus, there is only one type of behavior of the 

diameter of a convex body under projections: it decreases like x/~/n as long 
as k is larger than the critical value k*, and then it stabilizes on the value M*. 

(Note that here we know exact behavior, not only upper bounds.) 

In Proposition 3 below we deal with an abstract family of operators satisfying 

a condition which has nothing to do with the body K but only describes the 

way the operators act on individual points. Under this condition, a general 

reduction of diameter holds for all convex bodies. We discuss some examples for 

such families of operators in Section 5, including the classical case of orthogonal 

projections. 

PROPOSITION 3: Let  {A} be some family  o f  operators A : •n ~ ~n  with some  
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probability measure ~. Assume that for every x E ~n and for any s > So 

~[A: IAxl > slxl] < e -cns:. 

Then there exist universal constants c', C such that given a convex body K C 

R n the following holds: If so > M * ( K ) / d ( K )  then for every j > s2n, with 

probability greater than 1 - e -c'j on the choice of A we have 

A K  c C v ~ d ( K ) D n ,  

and if so <_ M * ( K ) / d ( K )  then with probability greater than 1 -  e -c'ns~ on the 

choice of A we have 

A K  C CM* (K)Dn. 

Moreover, the constant c' appearing in the probability is a function of the 

constant C, and by increasing C we can have c' as big as desired. 

To prove Proposition 3 we will use Talagrand's Majorizing Measures Theorem 

in the form of Theorem 4 below (see [Tal]); this type of application of the 

Majorizing Measure Theorem was suggested to me by Prof. Keith Ball and was 

used in a special case in [Artl]. 

THEOREM 4 (Majorizing Measures): There exists a universal constant Co such 

that for any dimension n, for every convex body K C R n, there exist families 

of points Bo C . . .  C Bm-i  C B,~ C . . .  C K with cardinality IBml < 22m such 

that for every x c K,  

~ d(x, Bm)x/2 -~ < CoM*(K)v/~,  
m=O 

where d(x, B,~) denotes the distance of the point x to the mth family, i.e., 

d(x, Bm) = inf{d(x, y) : y 6 Bm}. (Moreover, these points can be constructed 

so that i f  v m is the closest point to x in Bm, and Vm+l is the closest point to x 

in Bin+l, then v,~ is the closest point to vm+l in Bin.) 

Proof of Proposition 3: We fix m0 = log clj ,  with Cl universal to be chosen 

later. Each vector x E K we write as 

x = V m o I X / +  
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where Vm(X) E Bm is the member of Bm closest to x. We denote u,n(x) 
= Vm(X) - Vm-l(X), so that  lUm(X)l <_ 2d(x, Bm-1), and denoting Cm = 
{Um(X):X �9 K}, we have ICml <_ 2 2m+1. We rewrite 

c~ (d(x, Bm_l) 2X/~:- i lUre(X) I "~( Um(X ) 2CoM,(K)v~ ~ 
X=Vmo+ E \ CoM*(K)v ~ 2d(x, Bm_l)]\lUm(X)l x/2m-1 ]" 

m=mo+l  

The Majorizing Measures Theorem tells us that the sum of the coefficients 

in the left brackets of the infinite sum is less than 1. Therefore, for any linear 

operator A 

IA(um(Z) )l 2CoM*(K)v/-~ 
lAx[ <_ ]A(vmo(X))l + sup 

mo<m<  I m(x)l 

In other words, AK is contained in a ball of radius 

laurel 2CoM*(K)v~ 
(10) max IAv[ + sup 

v6Bmo mo<m<O~,umeC,, lUml ~/2 m-1 

We first discuss the case so > M*(K)/d(K). We use the assumption in the 

statement of the proposition, 

P[A: lAx] > slxl] <_ e -c~2,  

to show that  with probability 1 - e -c'j we have that: 

(a) for every v �9 Bmo, 

IAvl <_ Cl~/~lv l ,  

and 

(b) for every m > m0, for every Um�9 Cm, 

d 2v/-~ --~ 
Iduml <- (~'1 ~ v / ~  V n ]Uml �9 

This will complete the proof of the case So > M*(K)/d with C = C1 + 2COC1. 
For (a), since the probability of the event happening for a specific v is at 

least 1 - e -cc~j, we see that  if we have in Bmo no more than e c~j elements, for 

Cl = cC21/2, the probability that  for all of them we have this property is greater 

than 1 - e  -clj , which is precisely why we chose m0 = lOgclj (and we have thus 

specified Cl). In estimating the probability, we have used the assumption that  

Ct v/~--n > so, which is clearly satisfied if C~ > 1. 
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For (b) to happen we take care of each m separately. For each m the proba- 

bility is bounded by 

1-22"~+lP[,AxI> tV~,x , ] ,  

for t = ~**C1 ~ .  Since we consider m > m0, we have that  2 m-1 > clj, and 

hence we can apply the estimate for the probability, as long as, say, C1 > 1/Cl, 
getting 

1 - 22m+te -cC212"~-1 ~(d/M*)2. 

We are assuming that  so > M*(K)/d(K),  so j / n  > (M*(K)/d) 2. Therefore 

(if, say, C1 >_ 4 /v~)  we can bound this probability from below by 1 - 2 -c22m , 

and c2 can be large provided that  C1 is chosen large. Adding up for all m the 

probability of failure in (b), and adding also the probability of failure in (a) as 

the first summand, we see that  

(3O 

e-clJ + E 2-c22"~ ~ 2-c ' j '  

m = m o + l  

which completes the proof in the first case. Clearly by increasing C1 we can 

increase c r as much as required. 

In the second case, where so < M*/d, we take mo = log(clns2), again Cl to 

be chosen later. We use the assumption 

P[A: ]Ax[ > slx[] <_ e -~n82 

for s = Clso to show that  with probability 1 - e-cc~n~2~ 
(a) For every v C Bmo, 

IAv] <_ Clso]vl <_ C1M*(K); 

_ C12~/V ~:x and for s - ~ to show: 

(b) for every m > m0, for every u,n E Cm, 

]Au,~I <_ C1----~]Uml, 

and following (10) this will complete the proof in the second case so <_ M*/d. 
Calculating the probabilities, using that  now ~ > v/-~s0, we get that,  

when C1 > 1/v/-~, the probability is greater than 

oo 

1 - e -cousin - E 22m+le-cC~2m-1 

rn=vr~o 4-1 
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and for C1 sufficiently large the probability is greater than 1 - e -c'~so2. | 

4. A global  p r o p o s i t i o n  in t h e  r e v e r s e  d i r e c t i o n  

To have a complete global Dvoretzky-type statement, Proposition 2 provides 

just one direction, namely it shows that  the average of a certain amount of 

copies of K is contained inside a euclidean ball of an appropriate size. Actually, 

under these conditions nothing stronger can be stated. Proposition 5 below 

gives the reverse side, namely the containment of a ball. Naturally, it involves 

a condition which promises that  individual points are not shrunk "too much" 

by the operators. It also includes an a-priori assumption of diameter reduction, 

which can be obtained for example by using Proposition 2. We remark that  the 

condition in the proposition is about a specific value Co which is (four times) the 

radius of the ball we want inside our body. If one knows a more global condition 

satisfied for different values of e, for example a small ball probability estimate 

such as in [LO], one can sometimes get an "inner diameter increase" lemma by 

applying the condition each time to a different pair (G T). In this sense the 

proof below is very simple, and so can be adapted to various initial conditions. 

PROPOSITION 5: Let {A} be some family of operators A: R ~ --* ~n with some 

probability measure P. Assume that for some body K and some Co > 0 the 

following holds: for every x E ]R n 

where n < 1/4. 
probability p we have 

P[A: IIAxlIK <  olxl] (F(co)) n, 

Assume, further, that for some R and some T, with 

T 

IIA x,,, __ R,x,. 
i=1 

Then, i f T  satisfies T > ln(2+ 16R/co) / ln(1/ (2F(c0)) )  we have with probability 

greater than 1 - 2 -n  - p that 

T 
1 

41xl < IIA xlIK, 
i : 1  

where Ai are chosen independently according to the distribution P. 

Again we may reformulate the above in geometric form, namely assume 

that  the family of operators A: ll~ n --* ]~n satisfies for some body K 

and some ~o > 0 and F(co) < (1/4) 1/~, that  for every x E R n one has 
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P[A : IIA*xlI7~ < ~01xl] (F(CO)) n, and that  for some R and some T, with 
1 ~T  1A~K C RDn. Then, if T satisfies T > probability p one has T = 

ln(2 + 16R/r one has with probability greater than 

1 - -  2 - n  --  p t h a t  ~ D  n < --~ ET_] A~K. 

Proof of Proposition 5: We will show that  for an r net on the sphere, 

where R is the upper bound we are assuming, the inequality holds with r 

Then by the triangle inequality we will have for every x C S ~- 1 

T 

i=1 

The net has cardinality less than (1 + 8R/co) n. From Chernoff, the probability 

that  more than half of the numbers IIAixHg will be greater than ~0 is greater 

than 1 - (2(F(r T. The probability that  this is true for every point in the 

net is greater than 

1 --  (1 + 8R/go)n(2F(~o)n) T. 

We now write the condition on T which promises that this quantity is greater 

than 1 - 2 -n  and the proof is complete. | 

5. Some e x a m p l e s  

1. ORTHOGONAL PROJECTIONS. For an integer 1 < k < n let {Pk} be the 

family of orthogonal projections onto k-dimensional subspaces of ~n,  endowed 

with the normalized Haar measure. It is well known, and was shown for example 

(with precise estimates on Cl, c2 below) in [Artl], that  for s > Cl X / ~  

 [Pk: IPkxl > slxl] e -c2ns2. 

Proposition 3 then implies Milman's diameter reduction theorem for random 

projections (and by duality, one-sided estimates for Dvoretzky's Theorem for 

sections). Namely, for projection onto a random subspace of dimension k greater 

than k* = c(M*/d)2n the diameter decreases like V~--k/n, and for dimension 

lower than this the diameter is around M*. The other side of Dvoretzky's 

Theorem, namely that a projection onto a subspace of dimension k* is already 

with high probability isomorphic to a euclidean ball of radius M*, is not included 

in this statement. 
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2. SIGN-PROJECTIONS. For an integer 1 < k _< n let {Sk} be the family 

of k-dimensional sign-projections, defined as follows: for k sign-vectors Ei E 
{-1 ,1} n, i = 1 , . . . , k  let Sk(x) k = ~-~i=l(X,r E ]~k. We consider the 

uniform measure on this set, namely each ci is chosen with respect to the uniform 

measure on the n-dimensional discrete cube. It is not difficult to show that  for 

S > Cl V / ~  
P[sk: ISkxl > slxl] _< 

This is explained for example in [Art2], where in the same spirit as of the proof 

of Proposition 3 it was shown that  also for this family of operators a diameter 

reduction statement holds. In this case, however, the statement is not sharp, 

namely for certain bodies, such as B(g~), the decrease of diameter continues 

beyond the value k*. For a more detailed discussion see [Art2]. 

3. ORTHOGONAL ROTATIONS. Consider the family O(n) of orthogonal 

rotations in ~n,  endowed with the normalized Haar measure. Proposition 2 

and Proposition 5 together give us the famous global version of Dvoretzky's 

Theorem, namely that  the average of (d/M*) 2 random rotations of a body K 

is isomorphic to a euclidean ball of radius M*. This theorem first appeared 

in [BLM]. Indeed, the estimates that  we use are the famous concentration of 

measure estimate for t > 0 

~[~: IIIxllT~ - M*I  > tM*lx l ]  ~ ~ e  -(M'/d)~e(n-2)/2 

(where for one side we use this with one specific t = 1/2 say, and apply Proposi- 

tion 5, and for the other side we use the tail estimate for t > 1 and Proposition 

2). 

4. r  A convex body T of volume 1 is called a "r if there 

exists a constant A such that  for each 0 E S n-  1 we have that  the random variable 

X~ = (y, ~) (where y is random in T with respect to the volume distribution) is 

r with constant less than A, that  is, E(e (X~ _~ 2 (when the expectation is 

with respect to the volume distribution in T). 

We can define another projection-type operator as follows: Consider k random 

points yi inside this convex body T (random with respect to the volume distri- 
k X bution). Define Gk(x) = ~n ~i=1( ,Yi)ei, that  is, a projection-type operator 

from li~ n into Rk. 

To apply Proposition 3, we need to find So such that  for every x E ~n and 

for any s > so 

PiCk:  ICkxl > slxl] < e - c ~ .  
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To do this we use the r behavior in the standard Markov inequality scheme 

k 2 s2nx] 
i=l 

E(e(XlA)2)ke-S~n/A2 ~_ e-n(21A2-(kln)In 2) ~ e-k(s2/2A2) 

for s > A ~ V ~ .  
Following Proposition 3 we get exactly the same behavior as in the case 

of orthogonal projections and of sign-projections. Notice that  we have two 

different convex bodies involved, one which helps us define a random operator, 

and another whose diameter is reduced by applying this operator. The first is 

a r the second is arbitrary. 

The case of the same definition of an operator, but when the body T with 

which we define the random operator is general and not necessarily r is 

different, and is discussed in the next section. 

6. Some f u r t h e r  c o n t i n u a t i o n s  

We want to describe two extensions of the above propositions, which, joined 

together, are relevant to the example indicated at the end of the above section. 

The first extension of the local Proposition 3 is to the case of Cp behavior, or 

more precisely to the case where the tails are not as good, subgaussian, as in the 

statement of the proposition. To describe the result we need to introduce the 

parameter -~p(K), 1 < p < 2, associated to a convex body K.  This parameter 

was introduced by M. Talagrand in his Majorizing Measures theory, and is by 

now a widely used geometric parameter. Define 

"~p(g) • inf sup ~ d(x,  Bm)2  m/p 
xEK ~ '0  

where the infimum is taken over all families B m  C K,  m = 0, 1 , . . .  with IBml <_ 

22"~. For p -- 2 we have in effect already used the parameter 72(K) because 

"y2(K) ~ v ~ M  * (K) (this is exactly Talagrand's Majorizing Measures Theorem, 

one side of which is Theorem 4). For motivations for this definition, computation 

of "yp for certain bodies, and many applications, see [Tal]. 

Using this definition and the method as in the proof of Proposition 3, one 

gets the following 

PROPOSITION 6: Let  {A} be some  fami ly  o f  operators A : ~ n  __, IRn wi th  some 

probabi l i ty  measure P. A s s u m e  that  for some 1 <_ p <_ 2, for every  x E R n and 
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for any s > so, 

P[A: IAxl > slxl] _< e -cnsp. 

Then there exist universal constants c', C such that given a convex body K C ]~n 

the following holds: I f  so > 7 p ( K ) / d ( K ) n  1/p then for every j >_ sPn, with 

probability greater than 1 - e - d j  on the choice of A, we have 

AK C C( j / n ) I / pd (K)D~ ,  

and if  So ~_ 7 p ( K ) / d ( K ) n  1/p then with probability greater than 1 - e - c ' n s ~  o n  

the choice of A, we have 

A K  C v--w-r--  LIn. 
n l / P  

Moreover, the constant c ~ appearing in the probability is a function of the 

constant C, and by increasing C we can have e ~ as big as desired. 

The second extension we describe is to the case where instead of estimating 

the g2-norm of Ax,  we consider its size with respect to some other norm. The 

most important  case to consider is the gp-norm, because if we build a projection- 

type operator where the different coordinates are Cp and not r (for a general 

body this will be ~bz), then to get an estimate for their sum we have to sum 

p-powers of them and not squares (which may have terrible tails). We discuss 

the general case of measuring the size of Ax  by an arbitrary norm [[. [[ with unit 

ball say B. If our assumption is that  the images shrink in the norm [[. [[, we get 

that  the image of K is inside appropriate copies of B. More precisely, 

PROPOSITION 7: Let {A} be some family of operators A : ]~n __~ ~n with some 

probability measure I?. Let [[. [[ be some abstract norm, with unit ball B.  

Assume that for every x C ] ~  and for any s > so, 

]P[A: IlAxll > slxl] _< e 

Then there exist universal constants c', C such that, given a convex body K C 

]~n, the following holds: I f  So > M * ( K ) / d ( K )  then for every j >_ s in  , with 

probability greater than 1 - e - d j  on the choice of A, we have 

A K  C C ~ d ( K ) B ,  

and if  so <_ M * ( K ) / d ( K )  then with probability greater than 1 - e -c'ns~ on the 

choice of A, we have 

A K  C C M * ( K ) B .  



Vol. 156, 2006 A BERNSTEIN-CHERNOFF DEVIATION INEQUALITY 203 

Moreover, the constant d appearing in the probability is a function of  the con- 

stant C, and by increasing C we can have c r as big as desired. 

One can similarly combine the above two propositions. The proofs of these 

two propositions are similar to the proofs given in this note. Not to overload this 

paper technically, we will publish them, together with some more applications, 

such as example 4 of Section 5 with T a general convex body, elsewhere. 
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